Used to perform a logical implication on two expressions.
Syntax
result=expression1 Imp expression2
The Imp operator syntax has these parts:
Part | Description |
---|---|
result | Required; any numeric variable. |
expression1 | Required; any expression. |
expression2 | Required; any expression. |
Remarks
The following table illustrates how result is determined.
If expression1 is | And expression2 is | The result is |
---|---|---|
True | True | True |
True | False | False |
True | Null | Null |
False | True | True |
False | False | True |
False | Null | True |
Null | True | True |
Null | False | Null |
Null | Null | Null |
The Imp operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the corresponding bit in result according to the following table.
If bit in expression1 is | And bit in expression2 is | The result is |
---|---|---|
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 0 |
1 | 1 | 1 |
Example
This example uses the Imp operator to perform a logical implication on two expressions.
Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = A > B Imp B > C ' Returns True.
MyCheck = A > B Imp C > B ' Returns False.
MyCheck = B > A Imp C > B ' Returns True.
MyCheck = B > A Imp C > D ' Returns True.
MyCheck = C > D Imp B > A ' Returns Null.
MyCheck = B Imp A ' Returns -1 (bitwise comparison).